
The Big Trend in Informatics

and how it came to be

Hasan Altan Birler
IEL ’16

altan.birler@tum.de

informatics /­Inf@"matIks/ n: The science of
processing data for storage and retrieval; information
science.[1]

Oxford Dictionaries

ABSTRACT
An analysis of what machine learning is and how it became
one of the most fundamental shifts in how we work with
data.

1. INTRODUCTION
What computers do and what is researched in informatics
can be simplified as transforming data into new and more
useful data.

For example, let’s say you have the ages of people who live
in Turkey. Let’s call this data A.

A =


15
48
3
...

72


Every row in A represents the age of a person who lives
in Turkey. There are about 78,665,830 [2] rows in A, and
there is no way A can be useful to us without some kind of
processing.

Let’s say that we have a function median(X) = Y that
takes some data as input, and returns the median of that
data as output. Lets use median(X) on A.

median(


15
48
3
...

72

) =
[
30.1

]

By using the function median(X), we have transformed our
data into more useful and understandable data. Now that
we have the median age in Turkey rather than only the raw
data of the ages of every single person living in Turkey, we
can better understand and interpret our data.

In informatics you try to find faster and more useful ways
of transforming data, and you try to describe these meth-
ods of transformation as sets of instructions. These sets of
instructions are called algorithms.

algorithm /"alG@rID(@)m/ n: A process or set of rules
to be followed in calculations or other problem-solving
operations, especially by a computer.[3]

Oxford Dictionaries

Let’s define B as the exam results of an imaginary class of
size 5.

B =


93
87
98
63
72


What we want to do is to transform B into more useful in-
formation, such as the arithmetic mean of the exam results.
How can we develop a set of instructions that will allow us
to find the arithmetic mean?

Here is an example:

Algorithm 1: Taking the arithmetic mean

Data: exam results: B
Result: the arithmetic mean of exam results

1 let sum = 0;
2 for each bi in B do
3 add bi to sum;
4 end
5 let size = number of elements in B;
6 let mean = sum/size;
7 return mean;

Simply put, we add up all the elements in B to generate a
sum, and we divide this sum by the number of elements in
B to get the mean. Pretty simple right?



2. THE BIG TREND
Well, not every problem is so simple. Some problems are
very hard to solve algorithmically, and some are even diffi-
cult to understand or to boil down to simpler terms.

Figure 1: What is the next best possible move?
Answer: I am not good at backgammon.

Figure 2: How handsome are the guys in this photo?
Answer: Very.

Figure 3: Is the person on this picture happy or sad?
Answer: It’s complicated.

The big breakthrough in solving these kinds of problems was
to allow the computer to learn to solve these problems by
itself. This concept is called machine learning.

machine learning n: The capacity of a computer to
learn from experience, i.e. to modify its processing on
the basis of newly acquired information.[4]

Oxford Dictionaries

Let’s go back to our ”transformation of data” definition.
What we want the machine to be able to do is to trans-
form some form of data into new and useful data, and we
want the machine to be able to learn to do this by itself.

Lets look at the case of backgammon. We can try to teach
the computer to approximate the probability of white win-
ning given a board position. We can represent this approxi-
mation as the function eval(Board) which takes in a Board
position, and returns the probability of white winning given
the board position.

eval(Board) ≈ P (white wins given Board)

How do we find the next best possible move? If we have a
really good evaluation function, we can calculate all the fol-
lowing legal board positions (board positions achieved after
a legal move was made) and pick the one with the highest
probability of winning. If maxf (S) is a function that re-
turns the maximum element in set S according to the value
function f then:

choosenext(Board) = maxeval(possiblemoves(Board))

Pretty cool right? Don’t worry if you got a little bit confused
in the last part. What’s important is that you get the general
ideas behind transforming data and utilizing the result.

In this example, eval(Board) is an approximation of
P (white wins given Board). We do not know how to formu-
late P . We might have some idea on what affects P , like
having your checkers close to the finish will most probably
result in a higher P . However, if we have machine learning
in our tool belt, we can feed the computer with millions of
matches of backgammon, and let it learn based on how some
positions led to much better results when compared to other
position.

This process sounds complicated and is complicated in many
ways. However, we can still try to understand some of the
fundamental ideas behind it.

In many cases of machine learning, you have some learn-
ing data that consists of inputs and usually hand-generated
outputs. For example, if we want to teach a computer to
recognize faces, we would like to have many example images
of people’s faces and their corresponding names. Here the
face images are the inputs, and the corresponding names are
what we call the correct transformations of the inputs. We
would then use this learning data to teach the machine.

Now let’s look at an example of how a machine can be taught
to transform data correctly. Let’s say the function f is what
correctly transforms our data. The function f is what we
want to achieve, but we do not know what f is or how it is
formulated. However we are given many examples of correct
transformations:

f(3) = 15

f(7) = 35

f(−2) = −10

...

f(5) = 25

Let’s define a general use transformation function for num-
bers:

g(x) = c× x



We are going to try to teach g(x) to approximate f(x) by
manipulating the constant c. Let’s just give a random value
to c. I feel like 3 would be a good number to start with.

g(x) = 3 × x

To teach g(x) to approximate on f(x) we are going to adjust
c according to the correct transformation examples that we
have.

Let’s take f(3) = 15

Currently g(3) = c× 3 = 3 × 3 = 9

If we increase c by some value, for example ε = 1, g(x) is
most probably going to get closer to f(x). c is currently 3,
and by adding 1 our constant becomes 4.

After the adjustment g(3) = c× 3 = 4 × 3 = 12

12 is much closer to 15 then 9! So we are definitely in the
right direction. Let’s formulate our process into an algo-
rithm.

Algorithm 2: Approximating constant in linear function

Data: sample of correct transformations (input, output):
S

Result: the approximated constant
1 let c = 3;
2 let ε = 1;
3 define g(x) = c× x;
4 for each input, output in S do
5 if g(input) < output then
6 set c to c+ ε;
7 end
8 if g(input) > output then
9 set c to c− ε;

10 end

11 end
12 return c

If we execute this algorithm on enough samples, we will find
out that f(x) is most probably 5 × x. This could of course
be wrong, f(x) could be a polynomial with an incredibly
high degree. However, the more samples we have, the more
we can be confident in our approximation of f(x).

You might already be seeing some problems with our algo-
rithm. What would happen if we had set ε too high? We
most probably couldn’t have reached a solution. What if we
had set ε too low? Then we would need many more sam-
ples to reach a good enough solution. What if f(x) was a
different function? Then we would have needed another al-
gorithm to find our answer. If f(x) was a polynomial to the
second degree, we could have manipulating c0, c1 and c2 in
g(x) = c2 × x2 + c1 × x + c0 to find us a decent enough
approximation.

Even in our modest attempt at machine learning, we have
found many aspects in our algorithm which requires further
development. This is a really huge and complex area of re-
search, but it is not all rocket science. Every step of the way
there are some fundamental and intuitive ideas that, when

understood, provide a great understanding of the concepts.

Machine learning isn’t new. However it took some time for it
to find its place. Here is a good overview of its development
throughout the years:

<1950s Statistical methods are discovered and re-
fined.

1950s Pioneering machine learning research is con-
ducted using simple algorithms.

1960s —
1970s ’AI Winter’ caused by pessimism about ma-

chine learning effectiveness.
1980s Rediscovery of backpropagation causes a

resurgence in machine learning research.
1990s Support vector machines and recurrent neu-

ral networks become popular.
2000s Deep learning becomes feasible and neural

networks see widespread commercial use.
2010s Machine learning becomes integral to many

widely used software services and receives
great publicity.

[5]

In the following sections we are going to understand how
machine learning got so popular, and how trends in hard-
ware and trends in the availability of data have enabled this
technology to be utilized in a much greater scale.

3. TRENDS IN HARDWARE
Computers are mostly designed to do one thing. Execute
instructions, fast. That’s what CPUs (Central Processing
Unit [of a computer]) have been doing since their inception,
and they have been getting faster and faster every year.

Let’s look at a graph showing how fast CPU’s perform at
executing sequential instructions on numbers:

[6]

On the graph we see the performance of a single processing
core. Performance is certainly growing, but the growth has
significantly slowed down. As a matter of fact, it is getting
increasingly harder to increase the speed of CPU cores. So
what do CPU manufacturers do to solve this issue?

They add more cores.



When you add more cores, the CPU gets the ability to cal-
culate in parallel. So if there are some independent calcula-
tions that need to be performed, you won’t have to wait to
start on the second one until the first one finishes.

While most algorithms require a significant amount of se-
quential (non parallel) processing, there are many ways a
parallel architecture can help you with many tasks.

You have to execute the same function on multiple data?
Share the data among the cores and let them execute the
same instructions on multiple data simultaneously.

You have to execute different functions on the same data?
Share the functions among the cores and let them execute
the assigned functions on the same data simultaneously.

Both of these methods are great for machine learning be-
cause there are many cases in machine learning where you
do SIMD (single instruction, multiple data) or do MISD
(multiple instruction, single data). For example in our ap-
proximation of the linear function f , we could have split up
the task of checking g(input) < output to different cores. In
our example, g(input) < output is a fairly cheap operation
so it wouldn’t benefit much from parallelization, but on dif-
ferent examples it is easy to see why parallelization could
benefit the performance greatly.

Talking about performance and parallelization, I feel that
it is really important to mention GPUs (Graphical Pro-
cessing Unit). The following graph will make it clear why:

[7]

I want you to focus on the light green line which represents
GPU performance on primitive decimals and the dark blue
line which represents CPU performance on primitive deci-
mals. GPUs destroy CPUs when it comes to the sheer num-
ber of operations they can perform on decimals each second.
They are able to do this due to a fundemental difference in
their architecture.

GPUs have a lot of cores that are by themselves relatively
weak.

[8]

A GPU core is slower than a CPU core (a high end Nvidia
GPU’s base clock speed is around 4 times slower than an
Intel CPU’s base clock speed) and supports less types of
optimized operations. However, while 16 cores is a high
number of cores for a CPU, it is normal to talk about a
1000 core GPU.[9][10]

GPUs are inherently focused on parallel processing while
CPUs are designed to be first and foremost good at sequen-
tial processing.

This architectural difference in GPUs make them an incred-
ible fit for many machine learning tasks. Affordable GPUs
allow such tasks to be accelerated far more than many of
the most expensive CPUs. This hardware trend is one of
the factors that makes machine learning on big data sets so
prevalent today.

4. ADDITIONAL INFO ABOUT GPUS
Why are GPUs designed to be good at parallel tasks? Well,
graphical processing is usually a compute intensive task (a
task that requires many computations to perform) that can
easily be parallelized.

Images on computers are stored as a grid of colors. Each
cell in a grid is called a pixel.

pixel /"pIks(@)l/ n: A minute area of illumination on
a display screen, one of many from which an image is
composed.[11]

Oxford Dictionaries

The following picture of a bird consists of a grid of 32 × 32
pixels:

If we want to turn this image into a grayscale image, we
have to transform each colored pixel into a corresponding



gray toned pixel. A grayscaling operation on one pixel is
independent of the operations performed on the other pixels,
and the operation itself isn’t really cost intensive[12]. The
issue is that we have to perform it on every single pixel, and
even on this low quality image that amounts to 32 × 32 =
1024 grayscaling operations.

When performed on a CPU, the grayscaling of the whole
image might take some time to perform sequentially on each
an every pixel:

However, it is a trivial task for a GPU, that processes all
the pixels in parallel:

5. TRENDS IN DATA
For machine learning to work well, we need two things:

1. Great computational power

2. Lots of sample data

We talked about how developments in hardware allowed for
great computational power to be available. Now let’s talk
about data.

[13]

The cost of digital storage has been falling in an exponential
manner for quite a while now and this development has al-

lowed data to be stored and backed up in amounts that were
neither feasible nor believable before. Now companies and
organisations store more data then they could possibly need,
with the idea that the data may somehow be used someday.

This near infinite source of data has allowed machine learn-
ing to take place on a whole new scale.

• The Large Hadron Collider produces 25 petabytes of
data every year. [14]

• 4.5 billion likes generated daily on Facebook as of May
2013. [15]

• Photo uploads total 300 million per day on Facebook.
[15]

• 300 hours of video is uploaded to Youtube, every minute.
[16]

So it should come as no surprise that Facebook has one of
the best facial detection software in the world, powered by
machine learning.[17][18]

6. APPLICATIONS
There are infinitely many applications of machine learning,
here are some examples. Use the citations are further read-
ing material if you are interested!

• Facial recognition [19]

• Handwriting recognition [20]

• Diagnosing patients [21]

• Speech to text [22]

• Translation [23][24]

• Game Artificial Intelligence (Chess, Backgammon, Go)
[25][26]

• Showing ads (via predicting Click-Through-Rate, the
probability that person A will click on ad B) [27]

• Colorization of black and white images [28]

• Self driving cars [29]

7. SUMMARY
In this article we discussed the main goal of informatics,
transforming data into new useful data. We explored about
how machine learning on big data sets fundamentally work
and broadened our knowledge on its history and develop-
ment. We learned about the fundamental principles behind
CPUs and GPUs, and how this influences the performance
of different algorithms. We saw how developments in hard-
ware and the availability of data helped machine learning,
a relatively old research topic, explode in the last decade.
Finally, we looked at some applications of machine learning
that are already in our lives.

I hope that some things you learned from this article have
been useful in helping you make sense of this ”hot topic”,
and maybe even be useful to you in the future.



8. REFERENCES
[1] Informatics. http://www.oxforddictionaries.com/

definition/english/informatics, 2016.

[2] Turkey: Population. http://data.worldbank.org/
indicator/sp.pop.totl?locations=tr.

[3] Algorithm. http://www.oxforddictionaries.com/
definition/english/algorithm, 2016.

[4] Machine learning.
http://www.oxforddictionaries.com/definition/
english/machine-learning, 2016.

[5] Timeline of machine learning.
https://en.wikipedia.org/wiki/timeline_of_
machine_learning.

[6] Jeff Preshing. Preshing on programming.
http://preshing.com/20120208/a-look-back-at-
single-threaded-cpu-performance/.

[7] Cuda c programming. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/.

[8] Larry Brown. Deep learning with gpus.
http://www.nvidia.com/content/events/
geoint2015/lbrown_dl.pdf.

[9] Geforce gtx 1080 graphics card.
http://www.geforce.com/hardware/10series/
geforce-gtx-1080.

[10] IntelSupport. Intel core i7-6700k processor
specifications.
http://ark.intel.com/products/88195/intel-core-
i7-6700k-processor-8m-cache-up-to-4_20-ghz.

[11] Pixel. http://www.oxforddictionaries.com/
definition/english/pixel, 2016.

[12] John D Cook. John d. cook.

[13] matt komorowski. a history of storage cost, Sep 2009.

[14] Worldwide lhc computing grid.
https://en.wikipedia.org/wiki/worldwide_lhc_
computing_grid.

[15] Top 20 facebook statistics. https://zephoria.com/
top-15-valuable-facebook-statistics/, Jul 2016.

[16] 135 youtube statistics.
http://expandedramblings.com/index.php/youtube-
statistics/, 2016.

[17] Inside facebook’s biggest artificial intelligence project
ever.
http://fortune.com/facebook-machine-learning/.

[18] Mathew Ingram. Facebook’s new algorithm can
recognize you even if your face is hidden.
http://fortune.com/2015/06/23/facebook-facial-
recognition/, 2015.

[19] Openface.
https://cmusatyalab.github.io/openface/.

[20] Michael Nielsen. Using neural nets to recognize
handwritten digits. http:
//neuralnetworksanddeeplearning.com/chap1.html,
Jan 2016.

[21] Filippo Amato. Artificial neural networks in medical
diagnosis. http://jab.zsf.jcu.cz//11_2/havel.pdf,
Jan 2013.

[22] @googleresearch. The neural networks behind google
voice transcription.
https://research.googleblog.com/2015/08/the-
neural-networks-behind-google-voice.html, Aug
2015.

[23] Steve Dent. Google is using neural networks to
improve translate.
https://www.engadget.com/2016/03/11/google-is-
using-neural-networks-to-improve-translate/.

[24] Keith Stevens. Neural network models and google
translate. http://ufal.mff.cuni.cz/mtm15/files/11-
neural-network-models-and-google-translate-

keith-stevens.pdf.

[25] Td-gammon.
https://en.wikipedia.org/wiki/td-gammon.

[26] Alphago. https://en.wikipedia.org/wiki/alphago.

[27] Kevin Markham. Beginner’s guide to click-through
rate prediction with logistic regression.
https://turi.com/learn/gallery/notebooks/click_
through_rate_prediction_intro.html.

[28] Richard Zhang. Colorful image colorization.
http://richzhang.github.io/colorization/.

[29] Mariusz Bojarski. End-to-end deep learning for
self-driving cars.
https://devblogs.nvidia.com/parallelforall/
deep-learning-self-driving-cars/, Aug 2016.

http://www.oxforddictionaries.com/definition/english/informatics
http://www.oxforddictionaries.com/definition/english/informatics
http://data.worldbank.org/indicator/sp.pop.totl?locations=tr
http://data.worldbank.org/indicator/sp.pop.totl?locations=tr
http://www.oxforddictionaries.com/definition/english/algorithm
http://www.oxforddictionaries.com/definition/english/algorithm
http://www.oxforddictionaries.com/definition/english/machine-learning
http://www.oxforddictionaries.com/definition/english/machine-learning
https://en.wikipedia.org/wiki/timeline_of_machine_learning
https://en.wikipedia.org/wiki/timeline_of_machine_learning
http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/content/events/geoint2015/lbrown_dl.pdf
http://www.nvidia.com/content/events/geoint2015/lbrown_dl.pdf
http://www.geforce.com/hardware/10series/geforce-gtx-1080
http://www.geforce.com/hardware/10series/geforce-gtx-1080
http://ark.intel.com/products/88195/intel-core-i7-6700k-processor-8m-cache-up-to-4_20-ghz
http://ark.intel.com/products/88195/intel-core-i7-6700k-processor-8m-cache-up-to-4_20-ghz
http://www.oxforddictionaries.com/definition/english/pixel
http://www.oxforddictionaries.com/definition/english/pixel
https://en.wikipedia.org/wiki/worldwide_lhc_computing_grid
https://en.wikipedia.org/wiki/worldwide_lhc_computing_grid
https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/
http://expandedramblings.com/index.php/youtube-statistics/
http://expandedramblings.com/index.php/youtube-statistics/
http://fortune.com/facebook-machine-learning/
http://fortune.com/2015/06/23/facebook-facial-recognition/
http://fortune.com/2015/06/23/facebook-facial-recognition/
https://cmusatyalab.github.io/openface/
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://jab.zsf.jcu.cz//11_2/havel.pdf
https://research.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://research.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://www.engadget.com/2016/03/11/google-is-using-neural-networks-to-improve-translate/
https://www.engadget.com/2016/03/11/google-is-using-neural-networks-to-improve-translate/
http://ufal.mff.cuni.cz/mtm15/files/11-neural-network-models-and-google-translate-keith-stevens.pdf
http://ufal.mff.cuni.cz/mtm15/files/11-neural-network-models-and-google-translate-keith-stevens.pdf
http://ufal.mff.cuni.cz/mtm15/files/11-neural-network-models-and-google-translate-keith-stevens.pdf
https://en.wikipedia.org/wiki/td-gammon
https://en.wikipedia.org/wiki/alphago
https://turi.com/learn/gallery/notebooks/click_through_rate_prediction_intro.html
https://turi.com/learn/gallery/notebooks/click_through_rate_prediction_intro.html
http://richzhang.github.io/colorization/
https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/
https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/

	Introduction
	The Big Trend
	Trends in Hardware
	Additional Info About GPUs
	Trends in Data
	Applications
	Summary
	References

